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Abstract

Given a simple graph G = (V,E), a subset S of the vertices is
called a global defensive alliance if S is a dominating set and for every
vertex v in S at least half of the vertices in the closed neighborhood
of v are in S. Similarly, a subset S is called a global offensive alliance
if S is a dominating set and for every vertex v not in S at least half
of the vertices in the closed neighborhood of v are in S. In this paper,
we study the minimum cardinality global defensive and global offensive
alliances of complete k-ary trees. We also give bounds on the difference
between these two parameters for general trees.

Keywords: Global alliances, offensive alliance, defensive alliance, com-
plete k-ary trees.

1 Introduction

The study of alliances in graphs was first introduced by Hedetniemi, Hedet-
niemi and Kristiansen [5]. They introduced the concepts of defensive and
offensive alliances, global offensive and global defensive alliances and studied
alliance numbers of a class of graphs such as cycles, wheels, grids and com-
plete graphs. Haynes et al. [3] studied the global defensive alliance numbers
of different classes of graphs. They gave lower bounds for general graphs,
bipartite graphs and trees, and upper bounds for general graphs and trees.
∗Research supported by FQRNT (Le Fonds québécois de la recherche sur la nature et

les technologies) doctoral scholarship.
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Rodriquez-Velazquez and Sigarreta [9] studied the defensive alliance number
and the global defensive alliance number of line graphs. A characterization
of trees with equal domination and global strong defensive alliance numbers
was given by Haynes, Hedetniemi and Henning [4]. Rodriguez-Velazquez
and Sigarreta [6] gave bounds for the defensive, offensive, global defensive,
global offensive alliance numbers in terms of the algebraic connectivity, the
spectral radius, and the Laplacian spectral radius of a graph. They also
gave bounds on the global offensive alliance number of cubic graphs in [7]
and the global offensive alliance number for general graphs in [8].

Balakrishnan et al. [1] studied the complexity of global alliances. They
showed that the decision problems for global defensive and global offensive
alliances are both NP-complete for general graphs.

Given a simple graph G = (V,E) and a vertex v ∈ V , the open neighbor-
hood of v, N(v), is defined as N(v) = {u : uv ∈ E}. The closed neighborhood
of v, denoted by N [v], is N [v] = N(v)∪{v}. Given a set X ⊂ V , the bound-
ary of X, denoted by δ(X), is the set of vertices in V −X that are adjacent
to at least one member of X. A set X ⊂ V is called a dominating set if
δ(X) = V − X. The subgraph induced by X, denoted by < X >, is the
graph with vertex set X and edge set E(X) where uv ∈ E(X) if and only if
uv ∈ E(G).

Definition 1.1. A set S ⊂ V is a defensive alliance if for every v ∈ S,
|N [v] ∩ S| ≥ |N(v) ∩ (V − S)|. A defensive alliance S is called a global
defensive alliance if S is also a dominating set.

Definition 1.2. A set S ⊂ V is an offensive alliance if for every v ∈ δ(S),
|N [v] ∩ S| ≥ |N [v]− S|. An offensive alliance S is called a global offensive
alliance if S is also a dominating set.

Definition 1.3. The global defensive(offensive) alliance number of G is
the cardinality of a minimum size global defensive(offensive) alliance in G,
and is denoted by γa(G)(γo(G)). A minimum size global defensive(offensive)
alliance is called a γa(G)-set (γo(G)-set).

In this paper, we study the global defensive and global offensive alliance
numbers of trees. We find the asymptotic order of global defensive alliance
number of complete k-ary trees, and compute exactly the global offensive
alliance number. We also give a sharp bound on the difference between the
global offensive and global defensive alliance numbers for a general tree. The
results of the paper were first reported in [2] without any proofs. In this
paper, we provide the complete proofs.
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The rest of the paper is organized as follows. In Section 2, we find the
global defensive alliance number of complete binary and complete ternary
trees. We also find lower and upper bounds for the global defensive alliance
number of complete k-ary trees, and determine the asymptotic order. In
Section 3, we find the global offensive alliance number of complete k-ary
trees. In Section 4, we compare the global offensive and global defensive
alliance numbers of a general tree, giving a sharp bound on the difference.

2 Defensive Alliances in Complete k-ary Trees

A k-ary tree is a rooted tree where each node has at most k children. The
depth of a vertex v is the (edge) length of the shortest path from the root to
v. The depth of a tree is the maximum depth of a vertex. We denote by Li

the set of vertices that have depth i in a rooted tree. A complete k-ary tree
is a k-ary tree in which all the leaves have the same depth and all the nodes
except the leaves have k children. We let Tk,d be the complete k-ary tree
with depth d. T2,d is called the complete binary tree and in the sequel will
be denoted by Td. In this section, we compute γa(Tk,d) exactly for k = 2
and k = 3, and give close lower and upper bounds for general k.

We label the vertices of Tk,d as follows: let (i, j) be the jth vertex from
the left at depth i, for (0 ≤ i ≤ d), (1 ≤ j ≤ ki). For example, the vertex
(0, 1) is the root and the vertex (d, 1) is the leftmost leaf of the tree. The
parent of the node (i, j) is (i − 1, d j

ke). We first find the global defensive
alliance number of the complete binary tree.

Theorem 2.1. Let n be the order of the complete binary tree Td. Then
γa(Td) =

⌈
2
5n
⌉

for any d.

Proof. Obviously, if d = 1 then we have n = 3 and exactly 2 of the vertices
must be in the alliance. Therefore, assume that d ≥ 2.

For j < i, we define
Si,j = ∪i

k=jLk.

Consider the set Sd,d−2. It induces a forest where each component is a copy
of T2. Given a γa(Td)-set R, we claim that each component of < Sd,d−2 >
contains at least 3 vertices of R. Moreover, we claim that there is a unique
way that R can contain exactly 3 vertices in this component.

Without loss of generality, consider the component which is the subtree
rooted at vertex (d− 2, 1). Observe that if a vertex v ∈ R is not a leaf, then
at least one of its neighbors is also in R. If (d − 1, 1) /∈ R, then both of
its children, (d, 1) and (d, 2), must be in R because otherwise the alliance is
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not global. Similarly, if the vertex (d− 1, 2) /∈ R, then both of its children,
(d, 3) and (d, 4), must be in R. Therefore, without loss of generality suppose
that (d− 1, 1) is in R. At least one of the neighbors of (d− 1, 1) must be in
R. Whichever neighbor of (d− 1, 1) is in R, it does not dominate (d, 3) and
(d, 4). Thus, in the subtree rooted at (d − 2, 1) we need at least 3 vertices
to be in R. In fact, there is only one way of choosing these 3 vertices if R
is to be a global defensive alliance. This happens when we take (d − 2, 1),
(d − 1, 1) and (d − 1, 2) to be in R. So we have shown that every subtree
of Td rooted at a node at depth d− 2 must contain at least 3 nodes in any
global defensive R, and R can contain exactly 3 vertices in a unique way.

Next, we consider Si,i−3, i ≥ 3. This set induces a graph which is a forest.
All the components of < Si,i−3 > are isomorphic copies of the tree T3. We
claim that each component C contains at least 3 vertices of R. Moreover,
there is a unique way thatR can contain exactly 3 vertices of C. Without loss
of generality, consider the component C1 which contains the vertex (i−3, 1).
For each of the vertices (i − 1, 1), (i − 1, 2), (i − 1, 3), (i − 1, 4) either it or
one of its neighbors must be in R since otherwise R is not a dominating set.
Furthermore, each such vertex in R must also have a neighbor in R. The
best case we have is when we take (i− 2, 1), (i− 2, 2) to be in R. But each
of these vertices need to have a neighbor in R. So we must at least include
(i− 3, 1) in R as well. It is easy to see that if R contains exactly 3 vertices
in C1 then this is the unique combination.

Next, we define a set S
′
which is a global defensive alliance and show that

S
′

contains exactly 3 vertices in all the connected components of < Sd,d−2 >
and < Si−3,i >, for certain i’s. First let S be the set

S = ∪b(d−2)/4c
i=0 Sd−4i−1,d−4i−2.

We consider two cases.

Case 1: d 6= 1 mod 4.

Subcase (i): d ≡ 2 mod 4.

Then S = Sd−1,d−2∪Sd−5,d−6∪...∪S1,0. Then it is easy to see that S
′

= S
is a global defensive alliance. Also, S

′
contains exactly 3 vertices of each

component of < Sd−1,d−2 > and < Sd−4i−1,d−4i−2 > for all 0 ≤ i ≤ (d−2)/4.
Therefore, by what we proved above, S

′
is a global defensive alliance of
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minimum cardinality. The size of S
′

is

|S′ | = (2d−1 + 2d−2 + 2d−5 + 2d−6 + 2d−9 + 2d−10 + ...+ 21 + 20)
= 3(2d−2 + 2d−6 + 2d−10 + ...+ 20)

= 3

(
((24)

d+2
4 − 1)

24 − 1

)
=

1
5

(2d+2 − 1)

=
1
5

(2(n+ 1)− 1) =
2
5
n+

1
5
.

Thus, if d ≡ 2 mod 4, then γa(Td) = 2
5n+ 1

5 .

Subcase (ii): d ≡ 3 mod 4.

Then S = Sd−1,d−2 ∪ Sd−5,d−6 ∪ ... ∪ S2,1. Clearly, S
′

= S is a global
defensive alliance. By the same argument as in subcase (i), S

′
contains the

least number of vertices any γa(Td)-set must contain. Therefore, S
′

is a
γa(Td)-set. The size of S

′
is

|S′ | = (2d−1 + 2d−2 + 2d−5 + 2d−6 + 2d−9 + 2d−10 + ...+ 22 + 21)
= 3(2d−2 + 2d−6 + 2d−10 + ...+ 2)

= 3

(
2((24)

d+1
4 − 1)

24 − 1

)
=

1
5

(2(2d+1 − 1)) =
2
5
n.

Thus, if d ≡ 3 mod 4, then γa(Td) = 2
5n.

Subcase (iii): d ≡ 0 mod 4.

Then S = Sd−1,d−2 ∪ Sd−5,d−6 ∪ ... ∪ S3,2.
Now, let S

′
= S ∪ {(1, 1)}. It is not hard to see that S

′
is a global

defensive alliance. Also, S
′

has exactly 3 vertices in each of the components
of < Sd−1,d−2 > and < Sd−4i−1,d−4i−2 >, for 0 ≤ i ≤ (d− 4)/4. All we have
to show is that any global defensive alliance must contain at least one vertex
in S1,0. But this is true since the root must be dominated. Therefore, we
need at least one more vertex in addition to S, and adding (1, 1) (or (1, 2))
is sufficient to give a global defensive alliance. Thus S

′
is indeed a global
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defensive alliance of minimum cardinality. The size of S
′

is

|S′ | = (2d−1 + 2d−2 + 2d−5 + 2d−6 + 2d−9 + 2d−10 + ...+ 23 + 22) + 1
= 3(2d−2 + 2d−6 + 2d−10 + ...+ 22) + 1

= 3

(
22((24)

d
4 − 1)

24 − 1

)
+ 1

= 3
(

22(2d − 1)
15

)
+ 1 =

1
5

(2d+2 − 4) + 1

=
1
5

(2(n+ 1)− 4) + 1 =
2
5
n+

3
5
.

Case 2: d ≡ 1 mod 4.

Then S = Sd−1,d−2 ∪ Sd−5,d−6 ∪ ... ∪ S4,3.
Let S

′
= S ∪ {(1, 1), (0, 0)}.

It is easy to chekc that S
′

is a global defensive alliance. Also, S
′

has exactly 3 vertices in each of the components of < Sd−1,d−2 > and
< Sd−4i−1,d−4i−2 >, for 0 ≤ i ≤ (d − 5)/4. All that remains to show is
that any γa(Td)-set must contain at least two vertices of the set S2,0. But
this is clear since the root must be dominated and the vertex that domi-
nates the root must have another neighbor in the defensive alliance. Since
adding (1, 1) (or (1, 2)) and (0, 0) to S gives a global defensive alliance, S

′

is a γa(Td)-set. The size of S
′

is

|S′ | = (2d−1 + 2d−2 + 2d−5 + 2d−6 + 2d−9 + 2d−10 + ...+ 24 + 23) + 2
= 3(2d−2 + 2d−6 + 2d−10 + ...+ 23) + 2

= 3

(
23((24)

d−1
4 − 1)

24 − 1

)
+ 2

=
1
5

(2d+2 − 8) + 2 =
1
5

(2(n+ 1)− 8) + 2

=
2
5
n+

4
5
.

Therefore, γa(Td) = d25ne for all d ≥ 1.

Corollary 2.2. If d ≡ 2 mod 4 or d ≡ 3 mod 4 then there is a unique
γa(Td)-set. If d ≡ 0 mod 4 or d ≡ 1 mod 4 then there are exactly two γa(Td)-
sets.
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Proof. In case 1, it was shown that each component of Si,i−3 had to have
at least 3 vertices of any γa(Td)-set, and there was a unique way to choose
exactly 3 vertices. In the subcase (iii), we had two choices to choose a vertex
from S1,0. Similarly, in case 2 we had to choose two vertices from S2,0 and
we showed that this can be done in two ways.

Next, we find the global defensive alliance number of T3,d.

Theorem 2.3. If d ≥ 4 then γa(T3,d) = b19
36nc if d is odd and γa(T3,d) =

d19
36ne if d is even.

Proof. Again, define
Si,j = ∪i

k=jLk.

Consider the set Sd,d−2. Its induced subgraph, < Sd,d−2 >, is a forest.
Each component of the forest is an identical copy of T3,2. Given a γo(T )-set
S, we claim that each component of < Sd,d−2 > contains at least 7 vertices
of S. Without loss of generality, consider the component C1 which is the
subtree rooted at vertex (d− 2, 1). First observe that if v ∈ S is not a leaf,
then at least two of its neighbors are also in S. For each child u of (d− 2, 1)
which is not in S, all three children of u must be in S for otherwise S is
not a dominating set. Also, if a child of (d − 2, 1) is in S, at least two of
its neighbors must be in S. The children of (d− 2, 1) have one neighbor in
common, (d − 2, 1). Therefore, if m is the number of children of (d − 2, 1)
which are in S, then we need at least (2m+ 1) + 3(3−m) = 10−m vertices
of C1 to be in S. Therefore, C1 contains at least 7 vertices of S.

Next, we consider Si,i−3, i ≥ 3. This set induces a graph which is a
forest. All the components of < Si,i−3 > are identical of copies of the tree
T3,3. We claim that each component C contains at least 10 vertices of S.
Without loss of generality, consider the component C2 which contains the
vertex (i− 3, 1). First, assume that (i− 3, 1) is in S. For each child v of the
vertex (i− 3, 1) that is not in S, we need 3 vertices in Si,i−3 ∩ Tv (where Tv

is the subtree rooted at v) to dominate each of v’s children. For each child
u of (i− 3, 1) that is in S, we need at least one of u’s children, say y, to be
in S, and hence at least one child of y to be in S. Therefore, in this case
we have that S must contain at least 10 vertices of Si,i−3. Second, assume
that the vertex (i − 3, 1) is not in S. For every child u of (i − 3, 1) that is
not in S, one of u’s children, say v, must be in S to dominate u, and hence
two of v’s children must be in S as well. Also, we need at least two vertices
to dominate the other two children of u. Therefore, among u’s descendants
in Si,i−3 we need at least 5 vertices in S. Now, we consider the children of
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(i− 3, 1) which are in S. For every child w of (i− 3, 1) that is in S, at least
two of w’s children must be in S as well. For each of w’s children x that
is in S, one of x’s children must also be in S. Therefore, among w and its
descendants there are at least 5 vertices that must be in S. We conclude
that if (i−3, 1) is not in S, then S must contain at least 15 vertices in Si,i−3.

Therefore, we need at least 10 vertices of S in each component of Si,i−3.
Next, we define a set S

′
which is a global defensive alliance and show

that S
′

contains exactly 7 vertices in all the connected components of Sd,d−2

and 10 vertices in the components of Sd−3−4i,d−6−4i, for 0 ≤ i ≤ bd−6
4 c. By

what we proved above, this would imply that S
′

is a γa(T3,d)-set.
First let S1 be the set

S1 = ∪b(d−2)/4c
i=0 Sd−4i−1,d−4i−2

and S2 be the set S2 = {(i, j) : i = d, d− 3, d− 4, d− 7, d− 8, d− 11, d−
12 ..., d− 3− 4bd−4

4 c, d− 4− 4bd−4
4 c ; j = 1, 4, 7, 10, ..., 3i − 2}.

We consider two cases.

Case 1: d ≡ 2 mod 4 or d ≡ 3 mod 4.

Subcase(i): d ≡ 2 mod 4.

Then S1 = Sd−1,d−2 ∪ Sd−5,d−6 ∪ ... ∪ S1,0 and S2 = {(i, j) : i = d, d −
3, d− 4, d− 7, d− 8, ..., 3, 2 ; j = 1, 4, 7, 10, ..., 3i − 2}.

Let S
′

= S1 ∪ S2.
As was shown above, if S is a global defensive alliance then in each

component of Sd−3−4i,d−6−4i, for 0 ≤ i ≤ bd−6
4 c, it must contain at least 10

vertices, and in each component of Sd,d−2 it must contain at least 7 vertices.
It is easy to check that the set S

′
attains these lower bounds and at the

same time it is a global defensive alliance. Therefore, S
′

is a γa(T3,d)-set.
The size of S

′
is

|S′ | = 7× 3d−2 + 10× 3d−6 + 10× 3d−10 + ...+ 10× 30

= 7× 3d−2 + 10(3d−6 + 3d−10 + ...+ 30)

= 7× 3d−2 + 10

(
(34)

d−2
4 − 1

80

)

=
(

7 +
1
8

)
3d−2 − 1

8
=

57
8
× 2n

27
+

57
8
× 1

27
− 1

8

=
⌈

19
36
n

⌉
.
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Subcase (ii): d ≡ 3 mod 4.

Then S1 = Sd−1,d−2 ∪ Sd−5,d−6 ∪ ... ∪ S2,1

S2 = {(i, j) : i = d, d − 3, d − 4, d − 7, d − 8, ..., 4, 3 ; j =
1, 4, 7, 10, ..., 3i − 2}

Let S
′

= S1 ∪ S2.
Again, by a similar argument as in subcase (i) it’s easy to see that S

′
is

a global defensive alliance with size

|S′ | = 7× 3d−2 + 10× 3d−6 + 10× 3d−10 + ...+ 10× 31

= 7× 3d−2 + 10(3d−6 + 3d−10 + ...+ 31)

= 7× 3d−2 + 30

(
(34)

d−3
4 − 1

80

)
=

57
8
× 2n

27
+

57
8
× 1

27
− 3

8

=
⌊

19
36
n

⌋
.

Case 2: d ≡ 0 mod 4 or d ≡ 1 mod 4.

Here we are going to slightly modify the definitions of S1 and S2 but,
the general argument is the same.

Subcase (i): d ≡ 0 mod 4.

Then let S1 = Sd−1,d−2 ∪ Sd−5,d−6 ∪ ... ∪ S3,2 and S2 = {(i, j) : i =
d, d− 3, d− 4, d− 7, d− 8, ..., 5, 4 ; j = 1, 4, 7, 10, ..., 3i − 2}.

Let S
′

= S1 ∪ S2 ∪ {(1, 1)}.
S
′

is a γa(T )-set because we know that we need at least 1 vertex of any
global defensive alliance in the subtree formed by the root and its children.
The size of S

′
is

|S′ | = 1 + 7× 3d−2 + 10× 3d−6 + 10× 3d−10 + ...+ 10× 32

= 1 + 7× 3d−2 + 10(3d−6 + 3d−10 + ...+ 32)

= 1 + 7× 3d−2 + 90

(
(34)

d−4
4 − 1

80

)
= 1 +

57
8
× 2n

27
+

57
8
× 1

27
− 9

8

=
⌈

19
36
n

⌉
.
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Subcase (ii): d ≡ 1 mod 4.

Let S1 = Sd−1,d−2 ∪ Sd−5,d−6 ∪ ... ∪ S4,3 and S2 = {(i, j) : i = d, d −
3, d− 4, d− 7, d− 8, ..., 6, 5 ; j = 1, 4, 7, 10, ..., 3i − 2}.

Let S
′

= S1 ∪ S2 ∪ {(0, 1), (1, 1), (2, 1)}.
It’s not hard to see that S is a γa(T )-set since any global defensive

alliance needs at least 3 vertices in S2,0. The size of S is

|S| = 3 + 7× 3d−2 + 10× 3d−6 + 10× 3d−10 + ...+ 10× 33

= 3 + 7× 3d−2 + 10(3d−6 + 3d−10 + ...+ 33)

= 3 + 7× 3d−2 + 270

(
(34)

d−5
4 − 1

80

)
= 3 +

57
8
× 2n

27
+

57
8
× 1

27
− 27

8

=
⌊

19
36
n

⌋
.

When k is large, the methods used to prove the above theorems are
difficult to apply. The difficulty is in claiming a lower bound that every
γa(Tk,d)-set must have in a given partition of the tree. Therefore, for general
k, we give upper and lower bounds for γa(Tk,d).

Theorem 2.4. For d ≥ 2, and k ≥ 2,

kd−1

⌊
k − 1

2

⌋
+kd−1 +kd−2 ≤ γa(Tk,d) ≤ kd−1

⌊
k − 1

2

⌋
+kd−1 +kd−2 +kd−3.

Proof. To get the lower bound we claim that for any global defensive alliance
S, each component C of < Sd,d−2 > must contain at least 1 + k + kbk−1

2 c
vertices of C. The proof is analogous to the case when k = 3, which is
proven above. Summing over all the components gives the lower bound. For
the upper bound, define S1 = ∪d−1

i=0Li and let S2 be any set that contains
bk−1

2 c children of each vertex in Ld−1. Then S1 ∪ S2 is a global defensive
alliance.

It follows that γa(Tk,d) ∼ kd−1
⌊

k−1
2

⌋
, where the asymptotics is taken to

be in terms of k. Since the number of vertices of Tk,d is n = kd+1−1
k−1 we get

γa(Tk,d) ∼ n
2 when k tends to infinity.

Next, we consider the global offensive alliance number of a complete
k-ary tree.
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3 Offensive Alliances of Complete k-ary trees

It turns out that computing the global offensive alliance number for the com-
plete k-ary tree is significantly easier than computing the global defensive
alliance number. We have the following theorem.

Theorem 3.1. Let Tk,d be the complete k-ary tree with depth d ≥ 1. Then,

γo(Tk,d) =
⌊

n
k+1

⌋
.

Proof. Let S =
⋃b d−1

2
c

i=0 Ld−2i−1. We consider the following two cases.

Case 1: d ≡ 1 mod 2.

It is easy to see that S is a global offensive alliance. S is obviously a
dominating set, and for every v /∈ S, v’s children and parent are both in S.
We prove that any γo(Tk,d)-set contains at least as many vertices as S.

Let S
′

be any γo(Tk,d)-set. Let v be any vertex at depth d − (2i − 1),
1 ≤ i ≤ d+1

2 . Consider the subtree formed by v and its k children. We claim
that at least one vertex in this subtree must be in S

′
. Suppose not. Then

v’s parent must be in S
′

for otherwise v would not be dominated. Since v
is not in S

′
and its parent is in S

′
it follows that some of the children of v

must be in S
′
, a contradiction. Therefore, every such subtree contains at

least one vertex that must be in any γo(Tk,d)-set. It is easy to see that S
contains exactly one vertex for each such subtree. Therefore, S is a minimum
cardinality global offensive alliance. The size of S is

|S| = kd−1 + kd−3 + ...+ k2 + k0

=
(k2)

d+1
2 − 1

k2 − 1

=
kd+1 − 1
k2 − 1

=
n

k + 1
.

Therefore, if d is odd, γo(Tk,d) = n
k+1 .

Case 2: d ≡ 0 mod 2.

As in case 1, it is easy to see that S is a global offensive alliance. Also,
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by the same argument as in case 1, S is a γo(Tk,d)-set of size

|S| = kd−1 + kd−3 + ...+ k3 + k1

=
k((k2)

d
2 − 1)

k2 − 1

=
kd+1 − k

(k − 1)(k + 1)

=
kd+1 − 1 + 1− k
(k − 1)(k + 1)

=
kd+1 − 1

(k − 1)(k + 1)
+

1− k
(k − 1)(k + 1)

=
n

k + 1
− 1
k + 1

.

Therefore, if d is even, γo(Tk,d) = n
k+1 − 1

k+1 .
Thus, γo(Tk,d) = b n

k+1c for all d ≥ 1.

Note that γo(Tk,d) ∼ n
k with respect to k. As k becomes very large the

difference between γa(Tk,d) and γo(Tk,d) approaches to n/2. In general, we
are interested if this difference can be larger for other trees. This is what
we discuss in the next section.

4 Offensive Alliances vs. Defensive Alliances in
general trees

In this section, we prove the following theorem.

Theorem 4.1. For any tree T of order n, γa(T ) ≤ γo(T ) + n
2 .

Proof. Root the tree T at a vertex of largest eccentricity(the eccentricity of
a vertex x is equal to maxy∈V (G) d(x, y)). Let T have a depth d, and let v
be a vertex at depth d− 2. Let u be v’s parent. We are going to proceed by
induction on n. We may assume that diam(T ) ≥ 3. Otherwise, T is a star
and the theorem holds (this also establishes the base case).
Let Tv be the subtree of T rooted at vertex v. Let T

′
= T−Tv be the subtree

of T obtained by removing all the vertices of Tv, and let |T ′ | = n
′
. Define

P to be the set of children of v in T which are support vertices. Denote by
L the set of children of v which are leaves. By assumption on the diameter
of T , |P | ≥ 1. Let yi denote the number of children of each vertex in P ,
1 ≤ i ≤ |P |. We first prove the following two claims.
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Claim 4.2. γo(T
′
) ≤ γo(T )− |P |.

Proof. To see this consider a γo(T )-set S. Without loss of generality, we
can assume that all the vertices of P are in S (for every x ∈ P not in S
a child of x is in S and we can swap it with x). First, suppose v is not in
S. Then v’s parent u is dominated by a vertex in T

′
. In this case, it is

easy to see that S − P is a global offensive alliance for T
′
. Therefore, in

this case γo(T
′
) ≤ γo(T ) − |P |. Next, suppose that v is in S. Then the set

S −P −{v} ∪ {u} is global offensive alliance for T
′
. In this case as well, we

have the inequality that we desire.

Claim 4.3. γa(T ) ≤ γa(T
′
) + k, where k = 1 + |P | + max

(
d |L|−|P |2 e, 0

)
+∑|P |

i=1byi−1
2 c.

Proof. Let S
′

be a γa(T
′
)-set. Then if we add to S

′
, {v}, the set of vertices

in P and at most d |L|−|P |2 e vertices of L, and for each i ∈ P , byi−1
2 c of its

children then we get a global defensive alliance for T . A crucial assumption
here is that y1 ≥ 1.

By Claim 4.3 and the induction hypothesis we have

γa(T ) ≤ γa(T
′
) + k ≤ γo(T

′
) +

n
′

2
+ k.

What is left to prove is that γo(T
′
) + n

′

2 + k ≤ γo(T ) + n
2 . By Claim 4.2, it

is sufficient to prove that k − bn−n
′

2 c ≤ |P |. Since |P | ≥ 1, we have that

1+max
(⌈ |L| − |P |

2

⌉
, 0
)

+
|P |∑
i=1

⌊
yi − 1

2

⌋
≤ 1+

⌊ |L|
2

⌋
+
|P |∑
i=1

⌊
yi − 1

2

⌋
≤
⌊
n− n′

2

⌋
,

as required.

The above bound is best possible. Consider K1,n−1 where n is odd. Then
γo(K1,n−1) = 1 and γa(K1,n−1) = 1 + n−1

2 .
In a connected bipartite graph, each partite set forms a global offensive

alliance. It follows that γo(T ) ≤ n
2 for any tree T . Combining this with the

above result we obtain that |γa(T ) − γo(T )| ≤ n
2 . However, we believe the

following stronger result is true.

Question 4.4. Is it true that for any n-vertex tree T , γo(T ) ≤ γa(T ) + n
6 ?
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This conjecture, if true, is essentially best possible due to the following
theorem.

Theorem 4.5. For any constant ε > 0, there exists a tree T with γo(T ) ≥
γa(T ) + |V (T )|

6 − ε.

A

B

A

x

B Ax

T ∗

T

Figure 1: Constructing a tree T satisfying γo(T ) ≥ γa(T ) + |V (T )|
6 − ε.

Proof. The proof is constructive. First observe that for any tree T , we can
assume that there exists a γo(T )-set that contains all the support vertices of
T (i.e. the vertices that are adjacent to leaves). Note that in figure 1, the
four black vertices of the tree T form a global defensive alliance in T . By
the above observation, we know that the four black vertices are contained in
a minimum cardinality global offensive alliance. However, the black vertices
do not form a global offensive alliance since the condition is violated for
vertices x and B. Therefore, γo(T ) > γa(T ). Now, we append the tree T ∗
to T , where we join the vertex A of T with vertex B of T ∗. Note that the
six black vertices form a global defensive alliance in the new tree, and again
they are contained in a minimum global offensive alliance. As before, for
every vertex x, we need to add it (or its neighbor B) to the offensive alliance
to satisfy the offensive alliance condition. Thus, γo(T ∪T ∗) ≥ γa(T ∪T ∗)+2.
Now, we can repeat the appending operation. We append the tree T ∗ to the
current tree as before: we join the vertex B of the new tree T ∗ to the last
added vertex A of the current tree, i.e. the vertex A of the previous T ∗. It is

14



easily seen that the difference between the cardinalities of minimum global
defensive alliance and minimum global offensive alliance increases by one
after each such operation. Since T ∗ has 6 vertices, after sufficiently many
such operations we will obtain a tree that satisfies the necessary threshold
ε. This completes the proof.
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